

Åpent faglig møte i Bergen - Kompositt, Basalt og AR Glass

For eksempel i kai/marine konstruksjoner og andre konstruksjoner i korrosive miljøer. Kompositt armering korroderer ikke, er lett, fleksibel og har høy strekkfasthet.

TAXABLE AND

Selskapet ReforceTech produserer og selger kompositt armering, MiniBars™ og BasBars™ som erstatning for armeringsstål både i form av strukturell makro fiber og tradisjonelle stenger. Produktene er sertifisert fra Kontrollrådet og DnV med tilhørende dimensjoneringsveileder.

I dette foredraget kommer man inn på produkttyper, produksjon, virkemåte, egenskaper som strekkfasthet, heftegenskaper, brannmotstand etc. Ulike aktuelle bruksområder blir også presentert.

Per Cato Standal og Len Miller, ReforceTech

19.04.2018

Private & Confidential

Mineral Fiber Reinforcement Technology

Complete solutions in Durable High Strength Composite reinforcement for concrete

- Material and labor cost savings
- Productivity gain
- Design freedom
- Weight savings

19.04.2018

• Does not corrode, longer life span

NB horsk betongforening

Private & Confidential

Mineral Fiber Reinforcement Technology

Transforming one the worlds largest commodity markets with innovative solutions

Private & Confidential

Private & Confidential

Market application areas and references

1. Marine and floating

- Pontoons
- Barges
- Keys and Jetties, seawalls
- Sea weights
- 2. Pre-cast
 - Sandwich panels
 - Façade elements
 - Architectural precast
 - Inner walls
 - Barrier walls, concrete fences
 - Balconies
 - Pressure tanks and liquid containment tanks
 - HPC and UHPC applications
 - Non-conductive utility Poles

- 3. Infrastructure
 - Tunnel elements
 - Concrete Pipes
 - Bridge decks and edge beams
 - Slab on ground and roads and driveways
 - Pavements
 - Rail infra-structure
 - Non-conductive tram switches
- 4. Construction and in-situ
 - Slab on ground
 - Foundations and rafts
 - Screed
 - Inner Walls
 - Façade walls
 - Retaining walls
 - Piles
 - MRI suites
- 5. Shot Crete
- 6. Rock Anchors

SFMARINA

Floating Infrastructure New Innovations by SF Marina

Started with bars and nets in 2008. Moved to Carpets in 2009. Now produced with pre-tensioned BasBars™ and MiniBars™. Large Pontoons and small pontoons. 40mm walls, higher freeboard.

• Lower material cost, lower costs to produce, ship and maintain

- Corrosion Free
- 40% lighter
- Installations in Norway, Sweden, Germany, and Middle East

SF MARINA

BASALT (x-line)

Vollen by Telebryggen

- Installed Oct 2008
- Built with BFRP BasBars[™]
- Tendons and Nets

Pontoons for Telebryggen built exclusively by SystemBlokk in Norway

MiniBars™ Development route in Precast Insulated Wall Panels

- MiniBars[™] solution is in use on projects in Norway, Sweden, UK, USA, Canada
- Market trend for thinner panels driven by Architects
- Construction Industry seeks new wall panel design and solution
- This leads to thinner & lighter panels, bringing manufacturing and logistic cost saving, as well as improved and simplified installation by contractor, and last but not least allowing weight saving for the whole building driving to lighter foundation

Typical development route includes 2 phases:

- Immediate Applications
 - Target to reduce thickness of outer concrete layer by 50%, typically from 80mm (3") to 40mm (1 ½")
 - Structural Performance of inner concrete layer remains the same
 - Lowers manufacturing costs up to 30%
 - Panels with white polished concrete finish show up to 65% savings
 - Use of composite rebar at stress concentration areas such as the inside corners of windows and door openings
- Second step
 - Target to reduce thickness of inner concrete layer by 50%

MiniBars™

Development route in Precast Insulated Wall Panels

- MiniBars[™] macrofiber can be used with different types of finish:
 - Form finish
 - Polished surface
 - Sand blasted
 - Form liner
- After polishing or sand blasting, fiber laid out on the surface might be visible
- Fiber will not pull out with Sand Blasted finish

MiniBars[™] | Case Studies

ICA Shopping Center, Ljungskile Sweden

Entrance detail with thinner outer layer

7 Mineral Fiber Reinforcement Technology Store Entrance

Project Profile:

Category:	Retail Store
Owner & Developer:	ICA Grocery Stores
Structural Engineer:	AFG Consulting Engineers
General Contractor:	Kynningsrud
Precaster:	Kynningsrud
Completion:	December 2015

Technical details:

recast Element:	Precast Insulated Wall Panels 40mm (1 1/2") outer concrete layer White polished concrete finish
oncrete Type:	C50/60 – 7250 psi Concrete
omposite einforcement olution:	Cem-FIL MiniBars™ 43mm @ 5,7 Kg/m ³ – 9.6 lbs/yd ³ Composite bars to strengthen corners at windows & doors and FRP connectors to connect wythes
ther:	Unique corner design with polished surfaces at 90 degree end panels

Project description:

- For this project, the challenge was to supply precast insulated wall panels for the front entrance that were less weight and thinner profile than standard panels
- By replacing all WWR steel mesh with MiniBars™ corrosion-free composite macrofiber, the need for cover concrete was reduced
- The outer concrete layer thickness went down by 50% from 80mm (3") to 40mm (1 $\frac{1}{2}$ ") and then polished further to 35mm (1 $\frac{3}{8}$ ")
- Composite bars were used to strengthen the panels at stress concentration points
- FRP composite wythe connectors were also used so that there is no metallic reinforcing in the layer of concrete exposed to weather and no heat transfer points for maximum insulation value.

Horizontal stacked precast insulated panels

_	_		-
Dro	inct	Drofi	10.
FIU	iect	FIUII	ıe.

Category:	Commercial Building
Owner & Developer:	Kilenkrysset
Structural Engineer:	AFG Consulting Engineers
General Contractor:	Kilenkrysset
Precaster:	Kilenkrysset
Completion:	2015

Technical details:

Precast Element:	Precast Insulated Wall Panels 40mm (1 ½") outer concrete layer Stucco-style finish, painted black or white 60mm (2 ¼") inner concrete layer
Concrete Type:	C50/60 – 7250 psi
Composite reinforcement solution:	Cem-FIL MiniBars [™] 43mm @ 5.7 Kg/m ³ – 9.6 Ibs/yd ³ Composite bars strengthening at corners in window and door openings
Other:	-

Project description:

- For this 2-story front office and 3-story warehouse project, the challenge for Kilenkrysset was to supply precast insulated wall panels that were 50% less weight and thinner profile than standard panels
- By replacing WWR steel mesh with MiniBars™ corrosion-free composite macrofiber, the need for concrete cover was reduced so that the thickness of both the outer and inner concrete layer were 50% less.
- The outer layer was reduced from 80mm (3") to 40mm (1 $\frac{1}{2}$ ").
- The inner layer was reduced from 120mm (4 ³/₄") to 60mm (2 ¹/₄")
- Composite bars were used to strengthen the panels at stress concentration points at the inside corners of doors and windows
- Horizontally oriented panels do not require prestressed steel reinforcing that is typically used in vertical panels

MiniBars[™] | Case Studies Gate Precast, Ashland City, TN

Project description:

- Non Insulated façade panel
- 6' (1,8m) tall by 30' (9,0m) long architectural panel
- 2" (50mm) general thickness and deeper ribs (6"/150mm) around the perimeter for structural stiffness and appearance
- This panel would normally be 4" to 5" (100 to 125 mm) thick throughout

ReforceTech BasWave™ Connector

Complete solutions in

Durable High Strength Composite reinforcement for concrete

Value Proposition:

- Combination of High Performance Composite Macro-Fibers MiniBars[™] and BasBars[™] reduce or eliminate the need for reinforcing with steel or steel mesh
- Reducing the complexity of the casting and manufacturing process
- Making Concrete casting easier and allowing design freedom
- Corrosion resistant allowing use in concrete structures exposed to marine or corrosive environment.

Customer Value Drivers:

- Material & Labor Cost savings
- Productivity gain
- Design freedom
- Weight savings, lighter elements
- Longer life span solution

Complete reinforcement system for concrete Durable high performance composite reinforcement

High Performance Composite BasBars[™] - Rebars, Mesh and kits

ReforceTech unique rebar system is given Certificate of Fitness from DnV-GL and comes with approved designed guidelines.

Rebars

Ties & Stirrups Mesh, carpets

Customised geometrics

High Performance Composite Macro-Fibers MiniBars™

New highly competitive breakthrough technology for the large commodity market: **Pre-Reinforced Concrete**

- ReforceTech MiniBars[™] enable the concrete to be designed for loadbearing capacity with high flexural tensile strength and average residual strength
- MiniBars[™] are mixed directly in concrete to make it ductile and eliminate or reduce the need for reinforcing with steel and wire welded mesh.

Certificates and Guidelines

Guidelines

DNV-OS-C502: Fibre reinforced concrete (**MiniBars**[™]) and fibre reinforced rods (**BasBar**[™])) replacing steel reinforcement as reinforcement in concrete structures.

BasBar™ is certified by DNV-GL, including material certificate

MiniBars[™] are certified by DIBt, and Kontrollrådet

Rilem TC 162 TDF DBV DAfStb-guideline Eurocode 2 ; BS EN 1992 FIB Model Code 2010 Eurocodes 2;1 Design of Steel fibre reinforced concrete – Method, recommendations, Material and Structures, 2002 FRC to DIN 1045, part 1 to 3 and EN 206-1, mars 2010, Final version, 03/2010. Design of concrete structures Design of FRC members and slabs design of concrete structures, appendix 3

Certificates

Shotcrete development and cooperation

Proceedings of the World Tunnel Congress 2017 - Surface challenges - Underground solutions. Bergen, Norway.

MiniBarsTM – A non-corroding macro mineral fiber for rock support

Sindre Sandbakk Norconsult AS/Dr. Techn. Olav Olsen AS, Trondheim, Norway.

Leonard William Miller and Per Cato Standal *ReforceTech AS, Røyken, Norway.*

ABSTRACT: ReforceTech has developed a macro fiber type, MiniBarsTM, made of Alkaline Resistant-Glass or Basalt, as a durable alternative for shotcrete in tunnels. By use of MiniBarsTM the material use can be reduced, and thereby the CO₂ footprint will be reduced. MiniBarsTM has no electrical conductivity, has a density close to concrete (2100 kg/m3) and mixes easily into the concrete in sufficient large volumes to meet the specified energy absorption criteria. Due to the density, it does not float and pollute in underwater tunnels, nor does it clog the water pumps. The MiniBarsTM have four bonding mechanisms; length, helix, fiber roughness and diameter. All these four parameters can be tailored to optimize the performance for a given application. Recently, an experimental program has been carried out to quantify the necessary fiber amount to reach E700 and E1000 per the Norwegian Concrete Association's Publication No 7.

8 CONCLUSION

MiniBarsTM have been subjected to extensive investigations to be approved for use in structural and/or non-structural applications. The investigations have been primarily focused on durability and possible degradation of both the fiber and the concrete. No such signs are found, meaning that concrete reinforced with MiniBarsTM is durable, even in areas where the concrete is cracked!

The field testing at Kongsberg, and the following NB 7 testing at SINTEF, demonstrates that there are no difficulties in mixing, pumping and spraying MiniBarTM reinforced concrete in energy class E700 and E1000.

Field test of MiniBars[™] for Shotcrete

() SINTEF

SINTEF Byggforsk

H

NORSK AKKREDITERING

Test 107

Oslo

Prosjektleder/forfatter:

Arne Gunnar Bruun Kontrollert av:

Signatur Signatur

Kari Aarstad Rapportnr: SBF2016F0491

Gradering: Fortrolig

Tabell 4: Resu	ultat – energiabs	orpsjon panel 4	4, 5 og 6					50 An	
Panel	t [mm]	<i>d</i> [mm]	Antall brudd	Skjærbrudd	P _{max} [kN]	P _{rest} [kN]	E _{abs} [J]		
4	100	600	6	Nei	86,0	22,5	847,3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
5	100	600	5	Nei	69,9	14,7	669,1	10 440	
6	101	600	6	Nei	66,3	14,6	641,3	10 200	-
Middel	100	600			74,1	17,3	719,2	0 5 10 15 20 25 30 0 5 10 15 20 25	30

E700 was reached with 15 kg/m3 MiniBars[™], and E1000 with 25 kg/m3 MiniBars[™], corresponding to 933 J and 1333 J according to EN 14488-5.

Presentation WTC Bergen 2017

ReforceTech

MiniBars[™] - A non corroding macro mineral fiber for rock support

Sindre Sandbakk Norconcult AS / Dr Techn, Olav Olsen AS, Trondheim, Norway

Leonard Miller **ReforceTech AS** Røyken, Norway

How a MiniBar[™] Works

•

load capacity

MiniBars[™] solution is a **High-Strength Composite** Macro Fiber to reinforce concrete consisting of 1200 fibers glued together to create the MiniBar™

Density of MiniBars is 2,1 similar to concrete meaning excellent workability and high fiber count

 4 bonding mechanisms, length, diameter, helical shape and rough surface

Elastic mechanical behavior

combined with bonding and pull

Designed to bring post-

out resistance results in immediate

C25/30 - 2.5 Vol -% - 43 mm an

cracking performance to Concrete

Dosage can be tailored to meet design specifications

 MiniBars[™] macro fibers enable the concrete to be designed for load bearing capacity with high Flexural Tensile Strength and high Average Residual Strength

Proven Durability in Concrete

Certified by DIBt Z-3.72-2098 to 23 10 DIN - EN 14889-2 Certified harmless in concrete

> Static Performance proven and certified and characterized in accordance to EN14651 from 0.25 to 3% VF

Class A1 Flammability rating in accordance to DIN 4102 Class A1 up to 3VF% (63Kg/M3)

· Proven durability in accordance with DIBt certification process.

- CemFil AR Glass from Owens Corning with over 45 years proven field experience
- >16.5% Zirconia mineralogy to be • classed as AR Glass
- 100% amorphous (non crystalline)
- Contains none of the three known reactive forms of silica susceptible to alkali attack, Opal, Chalcedony nor Tridymite

Accelerated age testing demonstrated in IBAC (Aachen University) in accordance with the DIBt to demonstrate the MiniBar™ reinforced concrete has the long term durability required for structural reinforcement.

Per Cato Standal **ReforceTech AS** Røyken, Norway

Proven Shotcrete Performance

E700 was reached with 15

Field testing at Kongsberg, and

ReforceTec

Aineral Fiber Reinforcement Technolo

- 1.81

Single Fiber Tensile Tension - 20°C - AR-Glass MiniBars

Figure 8:
 residual flexural strength to CMOD, mean values of:

 C25/30 – 0.3 Vol.-% – 43 mm, C25/30 – 2.5 Vol.-% – 43 mm and

 C25/30 – 0.4 Vol.-% – 43 mm

How a MiniBars[™] Works

■ MiniBars[™] solution is a High-Strength Composite Macro Fiber to reinforce concrete consisting of 1200 fibers glued together to create the MiniBar[™]

• Density of MiniBars is 2,1 similar to concrete meaning excellent workability and high fiber count

• 4 bonding mechanisms, length, diameter, helical shape and rough surface

- Elastic mechanical behavior combined with bonding and pull out resistance results in immediate load capacity
- Designed to bring post-cracking performance to Concrete

• Dosage can be tailored to meet design specifications

■ MiniBars[™] macro fibers enable the concrete to be designed for load bearing capacity with high Flexural Tensile Strength and high Average Residual Strength

DIN 4102-1 fire test to building material - Test Method	
---	--

 Building material class
 Designation

 Class A
 A1
 Non-combustible materials

 Class B
 B1
 Not easily flormable

 Class B
 B2
 Flormable

 B3
 Easily flormable

Proven Durability in Concrete

- Certified by DIBt Z-3.72-2098 to DIN EN 14889-2
- Certified harmless in concrete

• Static Performance proven and certified and characterized in accordance to EN14651 from 0,25 to 3% VF

- Class A1 Flammability rating in accordance to DIN 4102 Class A1 up to 3VF% (63Kg/M3)
- Proven durability in accordance with DIBt certification process.
 - CemFil AR Glass from Owens Corning with over 45 years proven field experience
 - >16,5% Zirconia mineralogy to be classed as AR Glass
 - 100% amorphous (non crystalline)
 - Contains none of the three known reactive forms of silica susceptible to alkali attack, Opal, Chalcedony nor Tridymite

• Accelerated age testing demonstrated in IBAC (Aachen University) in accordance with the DIBt to demonstrate the MiniBarTM reinforced concrete has the long term durability required for structural reinforcement.

 Field testing at Kongsberg, and the following NB 7 testing at SINTEF, demonstrates that there are no difficulties in mixing, pumping and spraying MiniBar[™] reinforced concrete in energy class E700 and E1000.

■ E700 was reached with 15 kg/m3 MiniBars[™], and E1000 with 25 kg/m3 MiniBars[™], corresponding to 933 J and 1333 J according to EN 14488-5.

■ Fiber count in fresh concrete demonstrated remarkably low values of variation. This is due to the density of the MiniBarsTM, resulting in low variations in performance.

• The standard deviation was 5 % on average for 5 different deliveries.

PRODUCTION IN RØYKEN, NORWAY

MiniBars[™] and BasBar[™] Production in Røyken, Norway

MiniBars[™] machine output

- Nominal Output of 500 MT of MiniBar's per year on 3 shifts 5 days
- MiniBar[™] diameters 0.7mm dia.
- MiniBar lengths variable from 12mm to 60mm

BasBar[™] machine output

- Straight Bars
- Windings and angles
- Kits

MINIBARS™

HIGH PERFORMANCE COMPOSITE MACROFIBER

TECHNICAL CHARACTERISTICS

Material	Fiber Length	Fiber Diameter	Specific Gravity	Modulus of Elasticity	Tensile Strength
Alkali-resistant glass+ thermoset resin	43 +/-2 mm* 1.7 +/- 0.08 in.	0.70 mm 0.03 in.	2.0 ± 0.1	42 GPa 6,091,585 psi	> 1000 MPa / 145,038 psi

* Shorter or longer fibers are available on request

MECHANICAL PERFORMANCE

The fundamental mechanical performance of fiber reinforced concrete can be obtained from a three-point bending test performed on a prismatic beam of 150×150×550mm (6×6×22in.) including a notch at mid-span (EN 14651). The displacement-controlled testing system introduces a specific deflection or CMOD (Crack Mouth Opening Displacement) rate, and records load and displacement up to a CMOD limit of 3.5 mm (0.14 in). The fiber reinforced concrete performance is evaluated by means of residual flexural strength values at 0.5, 1.5, 2.5, and 3.5mm (0.02, 0.06, 0.10, and 0.14in.) of CMOD, namely f_{R1} , f_{R2} , f_{R3} and f_{R4} , respectively.

According to the fib Model Code 2010, the constitutive law of the material in tension is defined by means of the tensile stresses f_{Fts} and f_{Ftu} , calculated from f_{R1} and f_{R3} for service and ultimate limit state, respectively.

The sketch shows the basic configuration of the test.

The following curve shows a typical Load-CMOD response of a C30/37 concrete (4400 psi) reinforced with 10 kg/m³ (17 lbs/yd³) of MiniBars[™]. The table presents the mean values of residual strength.

Concrete Description :

EN206-1 C30/37 XC3/XC4 Dmax20 S4 CL 1.00, Slump=22 cm

ACI 211 | 4400 PSI Concrete, C1/F1 exposure class, 8 1/2" max. aggregate, 8 1/4" slump

	88 8 ,	
Mean flexural performance	MPa	psi
(prism 100x100x400mm 4x4x16 in)	(mean)	(mean)
f_c (100 mm / 4 in cube)	46.9	6800
fL	4.35	631
f _{R1}	3.67	532
f _{R2}	3.99	579
f _{R3}	3.61	524
f _{R4}	3.12	453
$ARS = (f_{R1} + f_{R2} + f_{R3} + f_{R4})/4$	3.60	520
f _{R3} f _{R4} ARS= (f _{R1} + f _{R2} +f _{R3} + f _{R4})/4	3.61 3.12 3.60	524 453 520

Note: using a 100×100×400mm (4x4x16 in), f_{R1} , f_{R2} , f_{R3} , and f_{R4} , are calculated at 0.4, 1.2, 2.0, and 2.8mm of CMOD, respectively

Application Area

Case Studies Out door roads and infrastructure

Performance Criteria

Corrosion Free, Non Conductive, Crack Control

Gothenburg	City	2012
------------	------	------

Engineering AF

AFconsult

Description MiniBar reinforced concrete used as the 20cm top layer of road surface at tram switching and signalling intersections.

Concrete and52,5Kg/m3 dosage of MiniBar in C35Dosagegrade of concrete.

Holmestrand Station 2016/17

Rambøll, Concribe

MiniBar reinforced concrete used as the 20cm top layer of road surface at bus station and train station entrances. Non conductive to protect against electrical and signalling issues.

10Kg/m3 dosage of MiniBar in C35 grade of concrete.

Case Studies

ST1 Tank Farms, Secondary Containment system

ConCribe

ConCribe

uen. ees. Res v/ 2% defe

0.039 N/mm2 200 mm 1.17 N/mm2 6.67 mm 0.01 N/mm3 0.00 N/mm3 4004 mm

Performance Criteria

Application Area

Corrosion Free, Crack Control, Structural

Multiconsult, Concribe
MiniBar reinforced concrete used as the 20cm slab on grade surrounding the tanks. Posttensioned concrete secondary containment wall. Durable and non corroding solution.
7 Kg/m3 dosage of MiniBar in C35 grade of concrete.

ConCribe * 1 bX 3.5 bX 3.5 bX 500 mm 1.20 mm 1.20 mm 1.20 mm 1.20 mm 1.21 mm 5f2b>3d o

Reviewed by ABO

ConCribe

Designed by: 1987. Castomer: Refer

sLade version \$ 20

0.00 100.00 100.00 100.00 100.00 100.00 UDI. 0 0.73 0

Application Area

Case Studies Rafts

Performance Criteria

Corrosion Free, Water Tight Crack Control

Engineering Rambøll, Concribe

Description MiniBar reinforced concrete used as the water tight raft. 32cm steel reinforced slab with MiniBars to ensure crack control eliminating nets at the top and bottom surface.

Concrete and5Kg/m3 dosage of 55mm MiniBar inDosage45MPa grade of concrete.

Application Area

Case Studies Screed, thin screed and structural screed

Performance Criteria

Corrosion Free, Crack Control

Multi	Story	Hospital,	Fosshagen
-------	-------	-----------	-----------

Engineering Veidekke

Description MiniBar reinforced concrete used as the 5 cm top layer. Multiple sites

Concrete and Dosage

5 Kg/m3 dosage of MiniBar in C35 grade of concrete, 5 to 8cm thickness

ConCribe

Concribe delivers designs to ground supported slabs, elevated slabs, jointless slabs, walls, rafts and precast elements with ReforceTech MiniBarTM

Gulv på grunn beregninger, Nye NB 15 og FIB Model code 2010 / TR34

Eksempel 1	Nye NB15, Gulv klasse 2	FIB MC 2010 / TR34
Industriklasse	lett	lett
Nett	335 mesh 8mm dia	ingen nett
MB dose	5kg m3	5kg m3
Rissvidde	0,47mm	0,3mm
Gulv tykkelse 100mm og opp	ja	ja
Godt komprimert underlag	ja	ja
Eksempel 2	Nye NB15, Gulv klasse 3	FIB MC 2010 / TR34
Industriklasse	lett	lett
Nett	ingen nett	ingen nett
MB dose	8kg m3	5kg m3
Rissvidde	Ikke kalkulert, definert som 1,0mm	0,35mm
Gulv tykkelse 100mm og opp	ia	mindre tykkelse mulig
	J~	

Gulv på grunn beregninger, Nye NB 15

ConCribe

INDUSTRIGULVE DIMENSIONERING EFTER NB 15 I SLADE

• GENERELLE BEMÆRKNINGER

Gulvklasse III Fiberbetong har risvidde på 1 mm uanset, kan ikke beregnes Gulvklasse II armering og fiberbetong har en risvidde på 0,5 mm, som kan beregnes Der er ingen linielast i NB 15, men kan påføres i SLADE efter CS TR 34 3rd 2010 Man kan kombinere armeringsnet og fiberbetong

• GULVETS BÆREEVNE OG RISVIDDE

Moment beregning er baseret på CMOD ved 2,5 mm

Risvidde er baseret på CMOD ved 0,5 mm

I gulvkasse II skal man kalkulere risvidde, som skal være mindre end 0,5 mm som akseptkriteria

Sandwich paneler

ConCribe

sAnd

.

Frecast sandwich panels initial design tool - concribe 2016 - www.concribe.com							
Insulation thickness	250	mm	Wind speed m/s (beaufort scale)	21	26,0 kg/m2		
Concrete thickness inner	80	mm	Span btw fixing points	7750	mm		
Concrete thickness outer	40	mm	Height	5000	mm		
Length	2650	mm	Load	60	kN/m		
Dosage rate	12	kg/m3	Horizontal load	1,965	kN		
Initial temperature (concrete temperature at pouring)	18	°C E	Concrete strength 28 days	40	Мра		
Static safety factor	1,3		Final temperature	25	°C		
Dynamic safety factor	1,5		Elasticity modulus of the panel	0,989383	mm4		
Inertia	1,62532E+14	mm4	Induced bending moment	24	kNm		
Rigidity	1,60806E+14		Loading coefficient	0,020833			
Deflection	0,12	mm	Deflection angle	0,003504	degrees		
crack width induced to outer panel	0,07	mm o	k Tensile stress outer panel	0,20	Мра		
Joint spacing FRC	171	m2 <i>o</i>	k Ultimate residual strength	2,30	Мра		
Linear expansion	0,001099	mm	Coefficient of linear expansion - concrete	12	10-6*°C-1		
Internal shrinkage stress	0,90	Mpa o	k Calculated Tensile strain	0,000144	%		
Excentricity	32,5	mm	Maximum concrete tensile strain to cracking	0,010	%		
Own weight bending under lifting	no	F	Crack width	0,5	mm		
Design Valid							

DISCLAIMER : Performance data given in this document is provided as a guide for the user to determining suitability. This document is property of ConCribe sas and is protected by copyright law. All rights reserved, including translations rights. No part of this document may be reproduced or transmitted in any form or by means, electronic, mechanical, photocopying or otherwise, without our written consent. The information in this document has been carefully checked and is believed to be accurate, however, no responsibility is assumed unless final validation by ConCribe sas. All data are subject to change without notice.

A Largest possible span between fixed points of the panel B Height of the panel C Loading per meter on the bearing inner wall from deck D Estimated final temperature of the hardened concrete at 28 days - depends on how panels are stocked E Initial temperature of fresh concrete at pouring

References : FIB Model code 2010 - Eurocodes 2 - Rilem TC 162

Sandwich paneler

ConCribe

sAnd

.

Precast sandwich panels initial design tool - concribe 2016 - www.concribe.com							
Insulation thickness	250	mm	Wind speed m/s (beaufort scale)	21	26,0 kg/m2		
Concrete thickness inner	80	mm	Span btw fixing points	7750	mm		
Concrete thickness outer	40	mm	Height	5000	mm		
Length	2650	mm	Load	60	kN/m		
Dosage rate	12	kg/m3	Horizontal load	1,965	kN		
Initial temperature (concrete temperature at pouring)	18	°C	E Concrete strength 28 days	40	Мра		
Static safety factor	1,3		Final temperature	25	°C		
Dynamic safety factor	1,5		Elasticity modulus of the panel	0,989383	mm4		
Inertia	1,62532E+14	mm4	Induced bending moment	24	kNm		
Rigidity	1,60806E+14		Loading coefficient	0,020833			
Deflection	0,12	mm	Deflection angle	0,003504	degrees		
crack width induced to outer panel	0,07	mm o	k Tensile stress outer panel	0,20	Мра		
Joint spacing FRC	171	m2 <i>o</i>	k Ultimate residual strength	2,30	Мра		
Linear expansion	0,001099	mm	Coefficient of linear expansion - concrete	12	10-6*°C-1		
Internal shrinkage stress	0,90	Mpa o	k Calculated Tensile strain	0,000144	%		
Excentricity	32,5	mm	Maximum concrete tensile strain to cracking	0,010	%		
Own weight bending under lifting	no	1	F Crack width	0,5	mm		
Design Valid							

DISCLAIMER : Performance data given in this document is provided as a guide for the user to determining suitability. This document is property of ConCribe sas and is protected by copyright law. All rights reserved, including translations rights. No part of this document may be reproduced or transmitted in any form or by means, electronic, mechanical, photocopying or otherwise, without our written consent. The information in this document has been carefully checked and is believed to be accurate, however, no responsibility is assumed unless final validation by ConCribe sas. All data are subject to change without notice.

A Largest possible span between fixed points of the panel B Height of the panel C Loading per meter on the bearing inner wall from deck D Estimated final temperature of the hardened concrete at 28 days - depends on how panels are stocked E Initial temperature of fresh concrete at pouring

References : FIB Model code 2010 - Eurocodes 2 - Rilem TC 162

Boxes dumped into back of truck

Dumping boxes directly into a truck will result in MiniBars not dispersed into the concrete and result in balls.

The MiniBars need time to flow with the concrete away from the landing zone in the car.

Dumping a box is equivalent to dosing at a rate of 10Kg/5 sec.

Or

300Kg/min

The recommended rates are 10Kg/min when using a blower to broadcast the MiniBars over the concrete surface

OR

5Kg/min when using a conveyor

This is to allow the concrete to move the Minibars away from the landing zone where they fall into the drum

Recommendations to eliminate balls Use a ReforceTech Blower at 10Kg/min

Ensure the MiniBars are dispersed over the concrete. Tube length is critical at this high dosage rate.

Zero balls

Recommendations to eliminate balls

Dosing using a conveyor – 5Kg/minute dose rate

Feed conveyor with even layer at 2 minutes per 10 Kg box

Conveyor with fixed high speed to move and throw the fibers into truck.

Truck mixer rotating at max speed to allow the concrete to move the MiniBars away from the landing zone into concrete.

Background Data & Conclusion

- MB have 3 times the number of fibers to distribute INTO the concrete
 - MiniBars 28850 MB per Kg of MB. 10kg/m3 = 290,000 MB per M3
 - SF 3000 to 5000SF per Kg of SF. 25Kg/m3 = 100,000 SF per M3
- Nov 2017 at Unicon where drivers dumped boxes in for 10Kg/M3 resulted in massive balls. See slide 2.
- Dec 4 2017 at Unicon mixing 5Kg/m3
- Dosing at 20Kg per min (1 box in 30 seconds) on the conveyor and slow rotating speed resulted in 10 balls in first trucks.
- Dosing at 10Kg per min on the conveyor and slow rotating speed resulted in ZERO Balls.
- CONCLUSION, Dosing at 5Kg per min on the conveyor and with a HIGH rotating speed on the truck WILL result in zero balls.